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1. Phys.: Condens. Mater 7 (1995) 3913-3928. Printed in the UK 

The two-group model for noble metals: low-field Hall effect 
and DMR in the limit of high dislocation densities 

F Sachslehner 
lnstitul f i r  Festkerperphysik der Universitiit Wien, Strudlhofgasse 4, A-I090 Wien. Austria 

Received 22 February 1995, in final form 24 March 1995 

Abstract Low-field Hall effect (LFHE) data obtained at 4.2K. and data on the deviations from 
Matthiessen's rule (DMR) obtained between 4.2-140 K. of dislocated high-purity silver, gold 
and copper are compared in order to complete and extend a previous investigation of copper. 
The corrections to the two-group model (EM) necessary to bring the anisotropy parameten for 
electron-dislocation scattering obtained from LFHE- and DMR into coincidence are discussed in 
t e m  of the different Femi  surfaces and Fermi velocities as well as relaxation-time distributions. 
New insight is gained inlo the fact that these corrections are moderate, although the assumptions 
of lhe EM are rather far from being fulfilled. The systematic chmges of lhe anisotropy 
parameters estimated from the corrected TOM (0.09 far Ag, 0.1 1 for Cu and 0.13 for Au) are in 
qualitauve agreement with the Watts model of elecuon-dislocation scattering. 

1. Introduction 

The purpose of this paper is to extend systematically a recent investigation on the low-field 
Hall effect (LFHE) and deviations from the Matthiessen rule (DMR) of dislocated copper [ I ]  
to high-purity silver and gold. First, there does not exist a common view of the two-group 
model (TGM) in all three noble metals. Second, there is increased interest in the context 
of electron-dislocation scattering from both the theoretical [2,3] and practical 141 points 
of view. As in [l], we perform the present investigation in the limit of high dislocation 
densities and in very pure metals. We emphasize that measurements and calculations of LFHE 
and DMR will provide a critical test of the TGM. The present Fermi surface integrals have 
an accuracy that has never before been published. In particular, systematic comparisons of 
the results for all three noble metals could clarify the importance of the TGM coq'ection and 
confirm the results obtained on copper alone. Using a DC-SQUID picovoltmeter [51 we have 
measured the Hall coefficient at 4.2K in the true low-field condition. 

Calculations of the low-field Hall coefficient (RH) within the TGM have been done until 
recently only for silver and copper [6], and then not with the accuracy available today. 
Therefore, particularly in the case of silver, the interpretation of earlier LFHE data [7] and 
DMR data [SI based on [6] has been subject to large errors. Later, Barnard 191 estimated 
the Fermi surface integrals for copper (by fitting to formulae, in contrast to integrals 
calculated from known Fermi surfaces) for the calculation of RH using a mixture of de H a s  
van Alphen results [lo], DMR and LFHE data on dislocated copper. These values of the Fermi 
surface integrals with rather limited accuracy [ I ]  were applied by several authors [Il-161 
in order to estimate the anisotropic scattering of conduction electrons from experimental 
values of RH for different samples of copper and copper alloys. For the determination of 
scattering anisotropy an accurate knowledge of experimental and theoretical values of RH 
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is in general very important. For high-purity gold there has existed, up until now, neither 
a true low-field measurement of RH at 4.2K nor a calculation within the TGM. 

The TGM, in the form of a two-scatterer formula [17], was frequently used for discussing 
with reasonable success the qualitative behaviour of DMR data in noble metals as being due 
to phonons and impurities [ 17-19] or phonons and dislocations [8,20). However, only rough 
estimates [ lo ,  171 or fits [19] of the TGM parameters were used. All the DMR calculations 
in this paper are done routinely with a threescanerer formula [21]. In addition, it is shown 
that the DMR formulae in general need a correction term; however, this term seems to be 
negligible for our application. 

2. The models 

Our comparison of LFHE and DMR will be based on an exact expression of RH written as a 
corrected TGM (see [l]): 

- RH = sf[l + (r/s)A;a]/(l +A@)? (1) 

where 

JNUz(k)r,?(k)K(k) as j ” , ~ ~ ( k ) . ~ , ? ( k ) ~ ( k )  d S  
k)K(k) dS 

r =  S =  
( 1 N , ) * s N U 2  (k)K(k)dS ( r B j ) Z J e V  ( 

sNuZ(k)@) d S  b J,u(k)dS a =  
JBu2(k)K(k)dS J,u(k)dS’ 

If the corrections are omitted, i.e. r = s = 1, equation (1) reduces to 

- RH = f ( 1  + Aja)/(l + Ajb)’ (2)  

where A; is the anisotropy parameter of scatterer j ,  is the Fermi velocity, T; is the 
relaxation time due to the scatterer j ,  and k is the mean curvature on the Fermi surface. 

Well defined anisotropy parameters can be calculated from (1) and (2) only if RH is 
measured in each case for one dominant scatterer. Below we will need Aphr Ai,,, and Adis, 
the anisotropy parameters for phonon, impurity and dislocation scattering respectively. In 
principle, these values can be obtained from the Hall coefficients of annealed undeformed 
samples at room temperature (R;m(ph)) and at 4.2K (Ri2(im)) and sufficiently dislocated 
samples at 4.2K (R;’(dis)). 

For the calculation of the DMR (8)  (intending a concrete interpretation only at 130K) 
we use the formula of Dugdale and Basinski [I71 extended to three scatterers [21]: 
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in the cyclic notation p4 = PI ,  ps = p2, A4 = A I ,  As = Az, where A, is the scattering 
anisotropy parameter of the jth scatterer (phonons, impurities and dislocations) and p j  is 
the resistivity of the jth scatterer on its own. The term b is the same as in (1). 

Agreement between DMR 6 and RH is achieved when the b and A, used in (3) are 
identical to the quantities in (1) or (2) for each scatterer j .  

We emphasize that, in general, equation (3) gives the DMR as being somewhat too low. 
This is again due to the fact that the TGM does not specify the exact k-dependence of 
relaxation times, which would require for each point on the Fermi surface (three scatterers) 

where qtor(k) is the total relaxation time at the point k .  As shown in appendix A, the 
additional DMR A8 can be estimated as 

with 

Since T&) is a function of temperature the correction parameter U will also depend on 
temperature. If we neglect the influence of impurities (the case of high-purity samples) the 
absolute correction will be highest for pph c pai. and will decrease in parallel with the DMR 
described by the TGM. 

3. Experimental details 

First, foils with a thickness of about 2 5 0 p n  were prepared using various heat treatments 
and rolling procedures. We used the following techniques. 

(i) MAR2 silver (MRC): 99.99% pure silver slug (diameter 12mm, length 11.8mm); 
rolling (always in a stainless steel sandwich) to a thickness of 2.5 mm; annealing at 550°C 
for 7 h; rolling to a thickness of 0.5 mm; annealing at 550°C for 7 h; rolling to 250 pn; 
annealing at 800°C for 10h in high vacuum (obtained residual resistivity lOnQ cm) 
followed by 7 h oxygen annealing at 800°C at a dynamic pressure of 1 x mbar [22]. 
Resulting residual resistivity: 2.3 nQ cm. 

(ii) Gold (dGUSSA): 99.99% pure gold sheet with 25 x 0.5" cross section; rolling 
(always in a stainless steel sandwich) to a thickness of about 250pm; annealing at 600°C 
for 10h  in high vacuum. The result was a residual resistivity of 1 l S n Q  cm. In order to 
get a lower value the gold sheets were annealed at 950 "C for 4 h in high vacuum followed 
by an oxygen anneal at 950°C for 22h under normal atmospheric air pressure [B]. The 
result was a residual resistivity of 2.31152 cm. 

The produced foils of silver and gold were cut into three pieces: in each case one 
piece remained as prepared in the undeformed (annealed) condition as a reference sample; 
dislocations were introduced into the second and third pieces by rolling to true strains, E ,  
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of about 50% and ]CO%, respectively (see table 3 in section 3.4). Vacancies were annealed 
out at room temperature. 

The final samples were made by spark erosion as in [I]. Details of LFHE at 4.?K, and 
DMR measurements between 4.2-140 K have already been described in [I]. DMR and LFHE 
measurements were always made on the same sample. We describe the DMR at temperature 
T by the experimental dislocation resistivity 

Pd.er(T) = p ( T ,  E )  - P(T, = 0) 

where p(T,&) and p(T,& = 0) are the resistivities of the dislocated sample and the 
undeformed reference sample, respectively. From pd.,(4.2 K) we estimated the true 
dislocation resistivity pd (see [ 12]), which will be necessary for DMR calculations by equation 
(3). by taking into account the DMR between impurities and dislocations. Annealing of the 
deformed silver samples in order to find the geometry factors (using ideal resistivity data of 
the noble metals [24]) was performed in high vacuum at 550'C for 7 h. A similar procedure 
for the gold samples was done under normal atmospheric air pressure at 600°C for 10 h. 

13.5 A 

1 
5.51 A " ,  ' " " " '  ' ' " " " '  ' ' " " '  

0 1 10 
gd.ex/gim 

IO 

Figure 1. Hall coefficient. RH, at 4.2 K as il function of the ratio of experimental dislocation 
resistivity to impurity resistivity, pd,cx/p;m. t. silver, A. silver data after B m x d  [7]; 0. gold; 
0. ME copper m d  0. MRC copper after [I] .  Broken curves: expected behaviour according to the 
results of copper. 

4. Results and discussion 

4.1. Hall effect 

Figure 1 shows the Hall coefficient RH at 4.2K as a function of the ratio of dislocation 
resistivity pd... to impurity resistivity pi,,, for the copper, gold and silver samples 
investigated. For comparison, the results on the MRC and ME copper of [ 1 J are also presented. 
The relation of the undeformed gold and silver samples to the highly deformed samples is 
analogous to that of the copper samples. This is indicated by the broken curves drawn in 



Hall coeflcient and DMR of dislocated noble metals 3917 

analogy to the results for copper, and can be explained as in [ l ] .  As intended, the deformed 
gold and silver samples lie at a value Pd.en/Pim - 10 and RH is independent of deformation 
within the error limits, as is the case for copper. We conclude that, in the samples with 
E near and above 5010, electron-dislocation scattering dominates and that the related Hall 
coefficients are a measure of the anisotropy of electron-dislocation scattering. A comparison 
with the silver data of Barnard 171 in figure 1 shows that results for the undeformed samples 
are roughly in agreement in the case of one sample; however Barnard's deformed samples lie 
slightly higher, having a ratio pd,er/pim - 4-5. This could be due to Barnard's deformation 
method: he used bending. 

Table 1. Hall coefficient in different states. (Units: IO-'' m3 C-',) 

Condition C" Ag Au 

R6w(ph), E = 0 -5.08 -8.70 -7.06 
Ri2(im), E = 0 -6.38 to -6.823 - I  1.09 -8.16 
R$'(dis). E = 0.5 -6.90 -11.80 -9.61 
Riz(dis), E ir I -6.89 -11.76 -9.59 
RH (fe) -1.31 -10.65 -10.59 

See [I]. 
RH(fe) is the freeelearon Hall coefficient. 

In table 1 the most important RH values of figure 1 are summarized, and completed by 
our measured room-temperature data. The measured values of RH given in table 1 have a 
total error of f l % ;  however the reproducibility of RH was about &0,3%. 

4.2. DMR 

The normalized DMR-data of silver, copper and gold for dislocations and phonons as main 
scatterers can be seen in figures 2-4 (points), where D = pd,,(T)/pd,,,(4.2). The data 
for copper are taken from [ 11. The experimental data for all three noble metals are very 
similar, as expected. The points for the higher deformed samples are always lower than for 
the smaller deformations, in accordance with theory [Z]. The total height of the experimental 
data at about 130 K (or the step height) decreases slightly from copper to silver to gold. 
The DMR-Curves for gold increase more rapidly at lower temperatures than those of silver 
and copper. This behaviour is similar to the increase of the ideal phonon resistivity of the 
noble metals [ 2 4 ] ,  and corresponds to the lower Debye temperature. The most interesting 
DMR-data are summarized in table 2. The broken and full curves are discussed later. 

4.3. The mo-group model and corrections 

4.3.1. The Fermi surface parameters. One of the most important parameters of the TGM 
is the choice of a suitable neck angle. From the viewpoint of physics, the best choice for 
the boundary between neck and belly region can be found according to the shape of the 
Fermi surface (the intersection between the neck and the approximately spherical part of the 
belly which coincides in that region rather well with the free-electron sphere [ 2 8 ] )  and the 
variation of relaxation times due to the difference of s- and d-like and p-like scatterers [25], 
respectively. In the approximation of the TGM the neck angle defines the neck region of the 
experimentally determined Fermi surface [26]  to lie within a cone about the (1 1 1 )  direction. 
The terms a ,  b and f in ( 1 )  and ( 2 ) ,  and b in (3), will vary according to B .  In order to 
overcome the somewhat mysterious choice of B in the past, in figure 5 the variation of a, b 
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Flyre 3. Normalized DMRCurves (D = &x(T) /p~.er (4 ,2  K)) for silver samples a a function 
of temperature, T. Points: experiment; broken curves: fit calculations giving A~, , (DMR);  full 
culve: DMR calculation using Ad$$ (Hall) of table 3. Sample Ag50. U. experimental points: - - -, 
A ~ ~ ( ~ M ~ ) = O . l 4 6 a n d p ~ , ~  = 15.62nRcm,-, Acu(Hdl) = 0 . 1 3 9 a n d p ~ ~  = 15.61nQcm. 
Sample Ag100 x.  experimental points: ---, Adi,(DMR)= 0.166 and ai, = 29.15nO cm: 
- , Ads(Hal1) = 0.144 and Pdb = 29. I I nn cm. 

I 

“0 20 40 60 80 100 120 140 
T (K) 

Figure 3. Normalized DMR-cuwe~ for copper (aner [I]). The meaning of the ewes is 
as in figure 2. Sample CuSO: D. experimental points; - - -,  ad,,(^^^)= 0.102 and 
P J , ~  = 13.09nR cm; Adii(Hall) = 0.144 and = 13.11 o n  cm. Sample Cu100 
x.experimenlalpoints;--, A d , , ( ~ ~ ~ ) = 0 . 1 1 3  andpdjr= 16.24nncm;-, A b ( H a l I )  = 
0.147 and p,jb = 16.25 nn cm. 

and f with 0 is shown for all three noble metals as calculated by Watts [27] based on the 
precise Fermi surface data of Hake [26]. 

As i t  seems to be impractical to change the neck angle according to the detailed 
anisotropy of the dominant scattering mechanism, the mosf general choice is a set of a ,  
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1.9 1 
, 
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0 20 40 60 80 100 120 140 
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Figure 4. Normalized DMR-Curves for gold. The meaning of cuwes is as in figure 2. Sample 
Au50  0, experimental points; ---,  A d i l ( ~ ~ ~ ) =  0.125 and Pdjs = 15.15nCZ em; -, 
Ad,,(Hall) = 0.104 and p a  = 15.13nCZ cm. Sample Au100 x ,  experimental points, - -  -. 
Adi,(DMR)=O.I39andpdi, = 17,20nC2cm;--, Adj,(HaIl) =0.109andpdiS = 17.18nRcm. 

b and f with a = 0, as described in [I]. With this choice the corrections connected with 
r # 1 are minimized on average (as different scattering anisotropies are concerned). 

We can see in figure 5(a) that the term a reaches zero at a neck angle 0 = 18.7" for 
copper, 17.9" for gold and 12.9" for silver (arrows in figure 5(a)). In  a comparison of these 
angles with the mean angles where the neck dives into the approximately spherical pan of 
the belly or free-electron Fermi surface [28], the respective values for copper (18.5') and 
gold (17.5") nearly coincide, whereas for silver (16.5") there is a strong discrepancy. This 
is due to the fact that the neck diameter at the Brillouin zone in silver is strongly reduced 
compared with copper and gold [28]. So the negative part of l, U*K dS (the numerator of 
the term a)  is balanced by a comparably smaller neck region (up to only 12.9") with positive 
curvature shifting the a value for silver in figure 5(a )  to the left so that it lies higher than 
the copper and gold curves. The fact that the value of 12.9" is so far from the physically 
indicated angle of 16.5" makes a comparison of the results difficult, because the anisotropy 
factors are not calculated from the corresponding regions and the TGM might fail if regions 
with strongly reduced curvature are counted as parts of the belly. 

Table 2. DMR data of the samples used 

Sample E (S) ~ 4 ~ ~ ( 4 . 2 K )  ~. . .(77K) D(130K) 

C"50 49 13.29 24.62 1.975 
Ag50 43 16.20 28.50 1.859 
Au50 66 15.50 26.52 1.768 
CUlOo 82 16.34 28.10 1.855 
AglOO 116 26.70 48.30 1.699 
AulOO 112 17.54 28.71 1.673 

The b curves (figure 5(b)) nearly coincide for all three noble metals. This term does not 
show the differences so much because it depends only linearly on the Fermi velocity.. 
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The term f (figure 5(c))  is inversely proportional to the electron density and has the 
same dimension as RH;  f is the leading term of equation ( I ) .  The remaining factor 
(1 + A 2 a ) / ( l  + bA)2 in (2) only diminishes the height of RH given by f by several 
per cent in the case of electron-dislocation scattering, as can be proved easily by values of 
A&,(Hall) of table 3 below. 

For the f curves shown the following lattice constants were used: Cu: 3.60303 A; Ag: 
4.06931 A and Au: 4.06506A [29]; (all values at 25 K). If ( I )  and (2) are used for room- 
temperature values of RH, the f term has to be increased by 1% due to thermal expansion. 
In this context it is of interest to compare f with the free-electron Hall coefficient RH(fe), 
which is done by the broken horizontal lines in figure 5(c). In the case of copper and 
gold the f value of around 20" does not lie very much higher than R$'(dis) from table 1 
(being lower than RH(fe)). For silver, however, the f curve indicates again that an angle 
of 12.9" cannot be used due to the large difference between f and RH(fe), but an angle B 
near 16.5" seems to be more suitable for a correct description. Additionally, for silver, we 
have R$*(dis) > RH(fe) (see table 1). 

4.3.2. Calculations of anisotropy parameters. Figure 6 shows the effect on Aph and Abr 
calculated by (2) (usual TGM) from the values of RApo(ph) and Riz(dis) in table 1 if the 
terms a ,  b and f are varied with the neck angle as presented in figure 5 .  The curves for 
Aph(300 K) of gold and copper almost coincide, show nearly no dependence on B (being a 
rather good indication for isotropic scattering) and lie around the value 0.95, which is close 
to the isotropic value Aph = 1. The value of Aph for silver lies considerably lower, and 
varies from 0.73 to 0.8. This is once more surprising because silver has a similar lattice 
constant to gold and has a Debye temperature between that of copper and gold; only its 
Fermi surface, with its smaller necks and smaller bulges deviates less from the free-electron 
sphere than that of copper and gold. The variation of Apb with 0 could indicate some slight 
anisotropy of electron-phonon scattering at room temperature. The lower value for Aph of 
silver could stem from the incorrect averaging of relaxation times in the (usual) TGM. As 
will be shown in section 4.4 only a very small correction parameter (s) is needed to get 
isotropic electron-phonon scattering (Aph = I )  for silver. In the past, the larger deviation 
from isotropic electron-phonon scattering in silver within the TGM was not found due to 
the large errors in the calculations and in the measurements of RH [6,7,30]. 

Adis values determined from RH are much more influenced by the choice of neck angle, 
as can be seen from the three lower curves in figure 6; Ams increases with increasing 8. 
There is nearly no difference between copper and gold. Again, the curve for silver is shifted 
to obviously lower values of A&$ due to the deviating neck proportion. In the conventional 
TGM the main point is that for gold and copper, the Adis values for neck angles B e 17" 
are negative while for silver that limit of the TGM is reached at B e 21". although silver has 
the smallest necks of the noble metals. As a consequence the uncorrected TGM does not 
work for silver, neither with a physically motivated boundary angle of 16.5" nor at 12.9" 
as was expected. 

Only formally can we try to find a suitable neck angle for silver yielding approximately 
the same A&s value as for the a = 0 version of copper and gold. We get B = 23", which is 
1" lower than the value suggested by Bamard [7]. Details of the calculation of anisotropy 
parameters (based on equation (2); conventional TCM) from R;'(dis) and Ripo(ph) with the 
a = 0 version of copper and gold and the '8 = 23" version' of silver are summarized in 
table 3 (the obtained anisotropy parameters are marked as Adis (Hall) and Aph (Hall)). It can 
be seen that the values of Adi. (Hall) due to the conventional TGM lie in the range 0.10-0.14. 
The Fermi surface parameters for the physically indicated neck angle of silver (0 = 16.5") 
are also shown in table 3. 
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Figure 6. Variation of calculated anisotropy parameters A with neck angle E .  -. Adir 
calculated from R i 2  (dis) by (2); - - -, Rps calculated from Rim (ph) by (2); . . . . . ,, A s r  (DMR) 
calculated irom the experimental DMR step height by (3). 

Table 3. Model p m e t e n :  results of anisotropy parameters from Hal1 effect and DMR 
calculations. /, a and s x e  in units of l0-''m3C-'. A mean value of two samples is 
always given. 

E 18.7 23 17.9 16.5 
n 0 0.244 0 0.0613 
b 0.219 0.401 0.214 0.1501 
f4.2 K 7.343 13.095 10.046 10.339 
fim K 7,417 13.260 10.141 10.470 
Aph(HalI) 0.949 0.836 0,927 0.782 
Ad.(Hali) 0.145 0.141 0.107 - 
Ad,(~ht~) 0.107 0.156 0.132 0.0895 
SdiS 0.984 1.015 1.010 1.170 
W 1.018 1.02' 1.026 1.03b 

r = 1.101 was used. 
r = 1.127 was used. 

4.3.3. DMR calculations. In this section we attempt to describe the step height of DMR 
at 130K (D(130K) - 1) in order to avoid the problem of the proper description of the 
anisotropy of electron-phonon scattering at lower temperatures, where violations of the 
relaxation-time approximation itself may occur [311. In  all cases we assume that the 
anisotropy of electron-phonon scattering is isotropic and does not change between 130- 
300K. An attempt to explain quantitatively the DMR for T < 130K must wait for new 
theoretical results. 

For our DMR calculations we use (3) and the b values of table 3. The connection of the 
~ M R  step height D(I30K) - I wilh (3) is given by D ( T )  = 6(T) / [pqm(4 .2 )J  + I .  In (3) 
we use the follou,ing values: pt = p,,, the ideal phonon resistivities [24]; p2 = pi,,,, the 
impurity resistivity at 4.2K, which is 2.3 nR cm for our silver and gold samples; for copper 
see [I]; & 1 pdis. the true dislocation resistivity which is about 0.2-0.5 nS2 cm lower than 
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by taking into account the DMR due to pi,, pdS, Ai, and A& Aph = 1, as stated 
in [I]; A;, = 1, since as in [ I ] ,  due to the influence of grain boundanes, the values of 
Ai, obtained by LFHE seem to he too low; and Adr. as shown in table 3 calculated from 
LFHE (Ad, (Hall)) or as the only free parameter in order to fit the experimental step height 
at 130K (given as A ~ $ ( D M R )  in table 3). 

Results of such calculations are shown in figures 2 (Ag, 8 = 23"), 3 (Cu, 6' = 18.7"), 4 
(Au, 8 = 17.9") and 7 (8 = 16.5") by the full curves (Ads(Hall)) and broken curves 
(Adis (DMR)). The broken curves are calculated under the condition that the experimental 
step height at 130 K is reproduced. Of course, the results for silver at 6 = 23" (figure 2) 
may suffer from the unphysically large neck boundary angle. Comparing figures 2-4 we 
can see that a higher experimental curve always corresponds to a higher theoretical curve. 
In the case of gold (figure 4) the experimental step height is overestimated (as for silver) by 
the use of Am. (Hall), whereas for copper it is underestimated (figure 3). As shown in the 
next section, we can explain this behaviour if we take into account the different averaging 
procedures of relaxation times involved in LFHE and DMR, which are influenced by the 
different Fermi surface properties of each noble metal. The error bars for the full curves 
(only drawn for 130K) are due to the experimental uncertainty of Adis (Hall) obtained from 
the total error ( I % )  of RH (ais). It must be noted that, compared with the total error, the 
scattering of the LFHE data is much smaller due to the high reproducibility (0.3%), as can 
be seen from the moderate differences between the values for the 50% and 100% deformed 
samples (see table 1). The fit calculations (broken curves) describe the experimental DMR 
curves (small error bars) at high temperatures quite well. Only for the samples Ag50 
(figure 2) and Au50 (figure 4) is there some overlap of the error bars. This means we have 
the important result from figures 2 - 4  that the anisotropy parameters calculated from RH and 
DMR are different. 

. 9 " " " ' " " " " " " " " " " " '  
0 50 100 150 200 250 300 

T(K) 
Figure 7. Normalized DMRCUrVeS for the two defamed silver samples extended lo mom 
lemperarure. Poinls: experiment; long-dash broken cuwe: hl calculations with 8. = 16.5". 
Sample Ag50 0, experimental points, - - -, A& (DMR) = 0.086 and p,jlr = 15.92nSl cm. 
Sample Ag100: x. experimentd points; - - -, AdiJ (DMR) = 0.093 and pcb = 29.43162 cm; 
- - -, Aair (DMR) = 0.036 and = 29S6nil cm with 6 = 12.9'. 

Figure 7 shows that fits for the DMR step height of silver with a neck angle 0 = 16.5" give 
reasonable results, particularly if the range of temperature is extended to room temperature. 
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However, the value of Ams (DMR) is drastically decreased compared to figure 2. As can be 
seen also in figure 7 the neck angle 0 = 12.9O (a = 0 version) is not reasonable for silver. 
As summarized in table 3 (for simplicity the mean values of the two samples are given) 
we have from the DMR calculations with Adis (DMR) the important result that the anisotropy 
parameter for electron-dislocation scattering increases from silver (0.09; 0 = 16.5") to 
copper (0.11) to gold (0.13). The same (qualitative) behaviour would be expected from 
the Watts model [32] of electron4islocation scattering due to the fact that the bulges of 
the Fermi surface increase from silver to copper to gold. In contrast. in the case of silver 
the unphysically large neck angle 0 = 23" falsifies the anisotropy parameter towards less 
anisotropy (0.15; see table 3). We note that the anisotropy parameter calculated from the 
usual TGM (Ad. (Hall) in table 3) does not reflect the situation so clearly as  ads(^^^) 
because of the more complicated averaging of the relaxation times (see the next section). 
However, we see in table 3 that both Adi,(Hall) and A ~ . ( D M R )  lie in the rather limited 
range 0.08-0.15, showing some agreement between LFHE and DMR measurements, 

The question arises: which range of neck angle should be taken into account in order 
to still get reasonable results. If we assume rather roughly that 0 c Ads c 0.2 the answer 
for the L M E  in the conventional TGM (see figure 6) is about f l " .  For the DMR we try to 
find it by fits of the experimental step height by varying the b term with 0. As a result. 
we get the variation of A*$(DMR) with 0 shown by the dotted curves in figure 6 (calculated 
only for the 100% deformed samples). It is obvious that the DMR fits require only a smooth 
variation of the anisotropy parameter Ads (DMR) with 0. This means that, within the TGM, 
the DMR is better able to fix the principal magnitude of the anisotropy parameters than 
RH.  Otherwise, the LME is more suitable for the determination of the concrete neck angle. 
Formally, the experimental step height can always be fitted by (3) if 6 is large enough (apart 
from the fact that the increase of the DMR curves may be unphysically steep). However, at 
too small angles even the step height cannot be described, as is shown in figure 7 for silver 
at 0 = 12.9". 

4.3.4. Estimation of correction parameters. As described by (1) the corrected TGM takes 
into account the different averaging of relaxation times for LFHE and electrical resistivity 
(DMR). The corrected TGM makes it possible that the same anisotropy parameters can be 
used for RH and DMR. Since the ratio r / s  is not known from experiment and is difficult to 
estimate, it seems to be useful (see section 4.3.1) to use (1) in the 'a  = 0 version', as was 
done successfully for Cu [ I ]  and as will be shown below for the case of gold. So, using 
experimental values of RH and anisotropy parameters calculated from the DMR step height, 
s values for different scatterers can be estimated using (I). 

However, for all cases where the a values are near zero the a = 0 version will be a 
rather good approximation (for all three noble metals). The accuracy of that approximation 
will depend on A,. In the case of dominant eIectron4islocation scattering (Adls - 0.1, see 
table 3) we have the most favourable case, and can use an approximation with a = 0 for 
silver up to a neck angle of 23". As can be estimated by the use of figure 5(a), for silver 
such a calculation at 0 = 23" underestimates RH (and s) by about 1%. 

In fact, by applying our preferred neck angles (18.7" for copper and 17.9" far gold; 
a = 0 version; 23" for silver) and using the anisotropy parameters  ads(^^^) of table 3, 
equation (1). using RH(dis), gives s values near unity (s c 0.98-1.02). The exception is for 
the physically indicated angle of silver (6 = 16.5") where a values x 1.17 is needed (a % 0 
approximation). The exact numbers, indicated as sb, (mean value of two samples), can be 
seen in table 3. Analogous to the DMR curves calculated by Ad. (Hall) (see figures 2-4) 
sdir for copper is slightly lower than unity, whereas the values for gold and silver =e larger 
than unity. 
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In a similar way we can calculate, from RAm(ph) of table I, the required number s 
for exactly isotropic electron-phonon scattering by using the neck angles from above. The 
results are indicated in table 3 as sph, and have values of about 1 .OLJ .03, where the highest 
correction is needed once more for the physically indicated neck angle of silver. However, 
to get this value for silver, some guess of the number r was necessary. We used r = 1.101 
(0 = 23") and r = 1.127 (0 = 16.5") assuming that the deviation of r from unity should 
be somewhat larger than that of s [I]. It can be seen in table 3 that the variation of sph is 
not so significant as that of sds. therefore these values are not discussed further. 

4.3.5. The relation of correction parameters to the Fermi su$ace properties. In this section 
we give an interpretation of the variation of the s values for electron-dislocation scattering 
calculated above for the physically indicated neck angles in table 3). In order to discuss 
changes of A b  due to the different Fermi surfaces we concentrate on the s correction and 
neglect the r corrections (because they have less influence on Ads) as well as the DMR 
corrections, which will be small and rather similar in all three metals. We therefore employ 
a two-parameter description of the r(k)-dependence, using the anisotropy parameter A, and 
the correction parameter s. The results must be discussed in terms of comparisons of the 
known Fermi surfaces. 

For an interpretation of the s values in terms of the different Fermi surfaces and the 
different Fermi velocity distributions of the noble metals, we must look at the difference of 
the averaging process: 

and 

There are consequences due to the introduction of curvature, K ,  as a weighting factor and 
due to the change from linear to quadratic averaging. We first discuss the influence of 
curvature on the belly: its effect is a shift of the average value 5 away from the r values 
present at the belly portions depressed below the free-electron sphere towards the r values at 
the bulges where the curvature is appreciably stronger. Since Bragg scattering is considered 
to be responsible for the electron-dislocation resistivity [32] the relaxation times should be 
lower on the bulges than at the depressions. Thus the isolated effect of the curvature K as a 
weighting factor will be a considerable reduction of the average (s < 1). As the bulges (and 
maximum curvatures) increase slightly from silver to copper and more strongly to gold the 
reduction of s will be slightly stronger in copper than in silver, and again only moderately 
stronger in gold because the higher bulges and increased curvature are confined to a smaller 
region. 

As for the quadratic averaging u2r2 on its own (at constant curvature) it is shown in 
appendix B that the effect is an increase if the changes of U and .c as a function of the 
position on the Fermi surface are mainly of the same sign. This is true for the characteristic 
u-dependences [28] and the relaxation times due to Bragg scattering as considered before. 
Moreover, for comparable r(k)-dependences this increase of r (s  > 1) grows with an 
increasing ratio of the highest and lowest U value on the belly rv = uma*ju,,,in. 

The Fermi velocity changes on the belly are smallest for copper (18%). are increased 
for silver (26%) and are highest for gold (43%). The combined influence of both effects 
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can qualitatively explain the differences in s between the noble metals. If both antagonistic 
effects are of similar size in gold, as is necessary for s = 1.01 as found there, it may be 
expected that for copper there will be a slightly smaller value (s = 0.984) as r, is strongly 
reduced and, as we have seen, for copper the effect of the K-weighting factor is a moderate 
increase of s compared with gold and simultaneously a marked decrease from quadratic 
averaging. 

It has to be mentioned that, although the absolute values of the s-parameters are only 
inaccurately known, their differences are rather significant due to the high reproducibility 
of the Hall coefficient measurement. A possible shift of the DMR values due to the 
correction that was neglected in this treatment will also not contribute strongly, because 
these corrections are not too different for the metals considered. Looking at the difference 
s(Ag) - s(Cu) it is clear that it has to be positive, because for silver the reduction in s 
(due to K-weighting) is smaller than in copper and at the same time the increase in s (due 
to quadratic averaging) is higher for silver because of its higher ru. In total, this estimate 
shows why the TGM works well for the present case of r ( k )  (electron-dislocation scattering), 
although the assumptions of the TGM are far from being fulfilled: the influences of squared 
averaging and weighting by the curvature show a strong tendency to cancel. 

5. Conclusions 

In the past, insufficient accuracy of LFHE measurements and of the calculations or estimates 
of the Fermi surface integrals have reduced the efficiency of the TGM. The comected 
TGM explains consistently the DMR step height at 130K and the low-field Hall coefficient 
of dislocated high-purity noble metals. Our investigation is consistent with isotropic 
electron-phonon scattering between 130-300 K. In contrast, electron-dislocation scattering 
is extremely anisotropic, having typical anisotropy parameters around 0.1. We may conclude 
that anisotropic scattering is the only important source of DMR. Although silver is the most 
free-electron-like noble metal, the discrepancy in averaging relaxation times between RH 
and DMR is largest for silver. This is due to the fact that, in the case of copper and gold, 
the different averaging contributions show strong cancellation. 
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Appendix A. DMR correction 

Based on (4), the TCM and the definitions under (I) ,  the exact total resistivity hot or 
conductivity at,,, can be written as 
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where 

and 

The correction parameters U and r are defined in terms of the total resistivity of the belly 
and neck region within the TGM, and of the exact total resistivity of belly and neck region 
based on the exact averaging for each point of the Fermi surface. Using 

m ~ ,  = o,/(l + bAj)  a ~ j  = UjbAj/( l  + bAj)  p j  = l/aj 
we obtain approximately (U and f are drastically smaller than 1)  

(AI) 
As the variation of u(k)r(k) on the belly is supposed to be lower than on the neck, but 
the belly portion is higher, the respective deviation parameters t and U will be of the same 
order of magnitude. Therefore, for an estimate of the DMR correction A& it seems to be 
appropriate to use the approximation 

A6 = fi,,,(TGM)u (W 
where pmr(TGM) is the total resistivity within the usual TGM. 

Appendix B. Estimation of quadratic averaging effects 

If r ~ j  is inserted in s (see (I)) ,  writing a general r ( k )  we obtain the following belly integrals: 

In order to see the effect of the dominant term 

the simple term (u!r:+u$r;)/(uLrI + u2rz)’ is considered. Since only the ratio is important 
as can be seen from the alternative formulation 

[(U:/u:) + (~:/$)l[(Ui/uz) + (ri/S)l-* 
we can choose (without loss of generality) U’ = 1 ,  rz = 1 and ut > 1. Now we find by 
standard discussion of the function 

f ( r l )  = (u:r: + I)(ulrl+ I)-’ 
that the function f(rl) z 1 ,  if 51 z 1 or r1 c l / $ ;  f ( q )  i 1, if r is between 1 and l/u;, 
with a minimum at I /u .  For q z 1 fixed, f(q,  V I )  increases with U). 
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